5.7 Zweidimensionale Stoßvorgänge
In Bild 5.36 siehst du die Bewegung der Kugeln beim Poolbillard nach dem Anstoß.
Nachdem wir uns im Kapitel mit eindimensionalen Stoßvorgängen beschäftigt haben, untersuchen wir in diesem Kapitel zweidimensionale elastische Stöße, wie sie zum Beispiel beim Billard oder Air-Hockey vorkommen.
5.7.1 Stoß mit einer Wand
Für die Untersuchung eines Stoßes einer Kugel mit einer Wand zerlegen wir den Impulsvektor der Kugel in zwei Komponenten - eine normal zur Wand, die andere parallel zur Wand (interaktives Bild 5.37).
Durch diese kluge Wahl der Komponenten erhalten wir einen Teilimpuls, der vor und nach dem Stoß unverändert bleibt, es gilt:
\[ \vec{p}'_x = \vec{p}_x \]
Die y-Komponente des Impulses können wir jetzt wie einen eindimensionalen Stoß behandeln. Dabei handelt es sich um einen elastischen Stoß bei einer ruhenden, sehr großen zweiten Masse. Wie wir schon wissen, dreht sich in diesem Fall der Impuls vollständig um. Aus der Impulskomponente in y-Richtung wird:
\[ \vec{p}'_y = -\vec{p}_y \]
5.7.3 Impuls im Schwerpunktsystem
Wir werden jetzt ein bewegtes Bezugssystem wählen, das sich mit der Geschwindigkeit des gemeinsamen Schwerpunkts bewegt. Das klingt seltsam. Es scheint die Aufgabe sogar schwieriger zu machen.
Durch die Impulserhaltung verändert sich die Geschwindigkeit des Gesamtschwerpunkts aller Massen nicht - sie ist vor und nach dem Stoß gleich!
Wählen wir als Bezugssystem den Gesamtschwerpunkt, ist seine Geschwindigkeit schon aufgrund seiner Definition null. In diesem Schwerpunktsystem (engl. center of mass reference frame) ist aber auch der Gesamtimpuls zu allen Zeiten null!
[TODO]