11.6 Temperaturstrahlung

Hast du schon einmal eine so schwarze Oberfläche wie in Bild 11.32 gesehen?

Vantablack Beschichtung auf einer Alufolie

Bild 11.32: Vantablack Beschichtung auf einer Alufolie

Heute können wir Beschichtungen herstellen, die mehr als \(99{,}9\%\) des einfallenden Lichts absorbieren. Dadurch entsteht diese tiefschwarze Farbe.

In diesem Kapitel geht es um schwarze Körper und ihre Strahlung. Die Erklärung der Schwarzkörperstrahlung durch Max Planck hat später sogar zur Entwicklung der Quantenmechanik geführt.

11.6.1 Schwarzer Körper

Als schwarzer Körper (engl. black body) wird in der Physik ein idealisierter Körper bezeichnet, der kein einfallendes Licht reflektiert und damit vollkommen schwarz erscheint.

Einen hundertprozentigen schwarzen Körper gibt es nicht, aber mit einem Trick wird das Ideal fast erreicht. Dafür verwendet man einen schwarz ausgekleideten Hohlraum mit einem Loch. Fällt Licht durch die Öffnung, wird es durch wiederholte diffuse Reflexionen geschwächt, so dass es durch das Loch nicht wieder austritt (Bild 11.33).

Hohlraum mit Loch

Bild 11.33: Hohlraum mit Loch

Die Strahlung, die aus dem schwarzen Loch tritt, kann also nur vom Körper selbst kommen und enthält keinen reflektierten Anteil mehr. Aus diesem Grund wird die Schwarzkörperstrahlung auch als Hohlraumstrahlung bezeichnet.

Den perfektesten schwarzen Körper, den wir kennen, ist übrigens die Sonne. Alle Strahlung kommt von der Sonne selbst.

11.6.2 Schwarzkörperstrahlung

Untersucht man die austretende Strahlung eine schwarzen Körpers – die sogenannte SchwarzköSchwarzkörperstrahlung (engl. black body raditation) – bei unterschiedlichen Temperaturn erhält man das Diagramm 11.34.

Schwarzkörperstrahlung

Bild 11.34: Schwarzkörperstrahlung

Für jede Temperatur zeigt die Kurve waagrecht die enthaltenen Wellenlängen und senkrecht die Intensität der jeweiligen Wellenlänge.

Das Erstaunliche: Das Diagramm ist für alle Stoffe gleich! Während die Längsausdehnung, Siede- und Schmelzpunkt bei jedem Stoff unterschiedlich ist, strahlen alle Stoffe bei der gleichen Temperatur mit gleicher Intensität und derselben spektralen Verteilung.

11.6.3 Wiensches Verschiebungsgesetz

Aus dem Diagramm 11.34 kannst du folgende Eigenschaft der Schwarzkörperstrahlung ablesen: Je größer die Temperatur, desto mehr verschiebt sich das Maximum der Kurve nach links hin zu kürzeren Wellenlängen. Die strichlierte Kurve verbindet alle Kurvenmaxima. Sie wird (nach dem Physiker Wilhelm Wien) Wiensches Verschiebungsgesetz (engl. Wien’s displacement law) genannt. Es lautet:

\[ \lambda_\mathrm{max} = {\frac{2\,897{,}8\,\mathrm{\mu m\ K}}{T}} \]

In der Formel steht \(\lambda_\mathrm{max}\) für die maximal abgestrahlte Wellenlänge und \(T\) für die absolute Temperatur des Körpers.

Bei einigen tausend Grad wird immer mehr Licht in dem für uns Menschen sichtbaren Bereich abgestrahlt (im Diagramm 11.34 durch das Farbspektrum gekennzeichnet). Alle Stoffe fangen an zu „glühen“ (Bild 11.35).

Glühendes Eisen

Bild 11.35: Glühendes Eisen

11.6.4 Stefan-Boltzmann-Gesetz

Aus dem Diagramm 11.34 kannst du auch noch eine weitere Eigenschaft der Schwarzkörperstrahlung ablesen: Je größer die Temperatur, desto größer die gesamt abgestrahlte Leistung. Das erkennst du an der Fläche unter der jeweiligen Temperatur-Kurve. Sinkt die Temperatur wird die Kurve immer flacher aber nie Null. Selbst ein Eiswürfel strahlt noch Wärme im Infrarotbereich ab!

Die Gesamtstrahlungsleistung eines schwarzen Strahlers mit der Oberfläche \(A\) wird durch das (nach den Physikern Josef Stefan und Ludwig Boltzmann benannte) Stefan-Boltzmann-Gesetz (engl. Stefan–Boltzmann law) beschrieben:

\[ P = \sigma \cdot A\cdot T^4 \]

In dieser Formel bedeuten

  • \(P\) die Gesamtstrahlungsleistung (in \(\mathrm{W}\))
  • \(A\) die Oberfläche des Körpers (in \(\mathrm{m}^2\))
  • \(T\) die Temperatur des Körpers (in \(\mathrm{K}\))
  • \(\sigma\) die Stefan-Boltzmann-Konstante (\(5{,}67\cdot 10^{-8}\;\mathrm{W}\mathrm{m}^{-2}\mathrm{K}^{-4}\))

Einige Pyrometer messen die Gesamtstrahlungsleistung eines Körpers pro Flächeneinheit und ermitteln daraus die Oberflächentemperatur.

11.6.5 Farbtemperatur

Auf den Verpackungen von Leuchtmittel findest du oft Bezeichnungen wie „Warmweiß“ oder „Kaltweiß“ und daneben befindet sich ein Temperaturwert in Kelvin (Bild 11.36).

Zwei Leuchtmittel mit unterschiedlicher Farbtemperatur

Bild 11.36: Zwei Leuchtmittel mit unterschiedlicher Farbtemperatur

Das ausgesendete Spektrum des Leuchtmittels entspricht dem Farbeindruck der ausgesendeten Strahlung eines schwarzen Körpers bei der angegebenen Temperatur. In Bild 11.37 ist diese Farbtemperatur (engl. color temperature) für die Temperaturen von \(800\;\mathrm{K}-12{.}200\;\mathrm{K}\) dargestellt.

Wahrgenommene Farbe eine Schwarzen Strahler bei der entsprechenden Temperatur

Bild 11.37: Wahrgenommene Farbe eine Schwarzen Strahler bei der entsprechenden Temperatur

Wieso gibt es unterschiedlich weiße Leuchtmittel? Tageslichtweiß (auch Kaltweiß; über \(5300\;\mathrm{K}\)) entspricht der Strahlung der Sonne bei einem wolkenlosen Tag zu Mittag. In diesem Licht werden alle farbigen Flächen möglichst unverfälscht wiedergegeben. Dieses Licht findest du in Büros und Arbeitszimmern. Der hohe Blauanteil dieses Lichts hält uns auch wach. Sinkt die Sonne am Horizont, nimmt der Blauanteil ab und wir werden müde. Das Licht bereitet uns für den Schlaf in der Nacht vor. Am Abend solltest du daher warmweißem Licht (unter \(3300\;\mathrm{K}\)) ausgesetzt sein, um den natürlichen Tag-Nacht Rhythmus zu unterstützen.

Viele Smartphones und Computern haben einen Nacht-Funktion. Dabei wird der Blauanteil des Displays (und manchmal auch die Bildschirmhelligkeit) automatisch der Tageszeit angepasst.

Da alle Sterne schwarze Strahler sind, kannst du aus der Farbe des Sterns und dem Diagramm 11.37 auf die Oberflächentemperatur schließen. Die Farbe unserer Sonne verrät uns, dass ihre Oberflächentemperatur rund \(6000\;\mathrm{K}\) beträgt.

11.6.6 Rechenbeispiel zum Wienschen Verschiebungsgesetz

Berechne die maximal abgestrahlte Wellenlänge bei Zimmertemperatur (\(T=21\;^\circ\mathrm{C}\)).

Das Wiensche Verschiebungsgesetz (11.6.3) liefert die maximal abgestrahle Wellenlänge bei gegebener Temperatur in Kelvin. Daher müssen wir zuerst die Temperatur in Kelvin umrechnen.

\[ T=21\;^\circ\mathrm{C}=294{,}15\;\mathrm{K} \]

Einsetzen in das Wiensche Verschiebungsgesetz liefert den Wert

\[ \lambda_\mathrm{max} = {\frac{2\,897{,}8\,\mathrm{\mu m\ K}}{294{,}15\;^\mathrm{K}}} = 9{,}85...\,\mathrm{\mu m} \]

Das Maximum der Schwarzkörperstrahlung bei Zimmertemperatur liegt bei \(9{,}85...\,\mathrm{\mu m}\). Diese Wellenlänge liegt im Infrarotbereich des elektromagnetischen Spektrums (von \(1\;\mathrm{mm}\) bis \(780\;\mathrm{nm}\)).